If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+34x+56=0
a = 5; b = 34; c = +56;
Δ = b2-4ac
Δ = 342-4·5·56
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-6}{2*5}=\frac{-40}{10} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+6}{2*5}=\frac{-28}{10} =-2+4/5 $
| 3+8n=6n+1 | | x^2-20x+162=0 | | 3(2x–3)=4+11x | | n+27=70n= | | 12c=5+11c11c | | 8x−18=-2 | | 8x−18=2 | | a÷3+7=15 | | 9b-33=48 | | 0.75p2-1.75p+0.5=0 | | 5+3x=-(-3x-5) | | -90=-9(c-85) | | 2x+1/x-3=-1/12 | | 72=9(h+4) | | g/10-2=3 | | 8(n-85)=32 | | 3(j-93)=3 | | 8x-5=39 | | h/7+47=56 | | 21-3b=18 | | a-4/6=2/3 | | 60=-2r+-22 | | 7x-5=5x/9 | | 55-25-x=55 | | 6(z-80)=60 | | 200+(40)x=100+(50)x | | 3/2=x/2.4 | | 6(j-92)=12 | | n/4-7=1 | | 34=16+6b | | 4(x+3)=189 | | 6x–9=39 |